III Semester

S. No.	Subject Code	Subject	Category	L	Т	Р	IM	EM	Credits
1	1821301	Mathematics- III	BS	3	1	0	30	70	4
2	1824302	Managerial Economics and Financial Analysis	HS	3	0	0	30	70	3
3	1804303	Electronic Devices and Circuits	EC	3	0	0	30	70	3
4	1804304	Digital System Design	EC	3	0	0	30	70	3
5	1804305	Signals and Systems	EC	3	0	0	30	70	3
6	1804306	Network Theory	EC	3	0	0	30	70	3
7	1805307	Python Programming	ES	0	0	3	50	50	1.5
8	1804308	Electronic Devices and Circuits Lab	EC	0	0	3	50	50	1.5
9	18993M1	Environment Science	МС	2	0	0	30	0	0
Total:									22

Course	Title	MA	THEM	IATIC	S – III		B. Tech. EC	E III Sem	I			
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
18213	301	РС	PC L T P C Internal Assessment									
			3	1		4	30	70	100			
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs			
Course	Objecti	bjectives:										
The obje	The objective of this course is to familiarize the students Bessel functions, Legendre's equations											
and the c	concept	s of complex va	ariables	to equip	the stud	dents to so	lve application	n problems	s in their			
disciplin	es.											
~	<u> </u>		0.1									
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to				
CO 1	Solve	Bessel and Leg	endre's	equation	is in terr	ns of poly	nomials.					
CO 2	Define	e analytic functi	on, sing	ularities	, poles a	and residue	es					
CO 3	Determine the differentiation of complex functions used in engineering problems and											
	analyz	e images from a	z-plane (to w-pla	ne.							
CO 4	Discus	sthe various sp	pecial tra	ansforma	ations.							
CO 5	Analy	ze real definite	integral	s in defi	nite regi	ons.						

UNIT I

Bessel functions –Introduction – Recurrence formulae for $J_n(x)$ – Generating function for $J_n(x)$ – Jacobi series – Orthogonality of Bessel functions – Legendre's equation – Rodrigue's formula, Legendre Polynomials – Generating function for $P_n(x)$ – Recurrence formulae for $P_n(x)$ – Orthogonality of Legendre polynomials.

UNIT II

Functions of a complex variable – Limit – Continuity -Differentiability – Analytic function – Properties – Cauchy – Riemann equations in cartesian and polar coordinates – Harmonic and Conjugate harmonic functions. Construction of analytic function using Milne's Thomson method.

UNIT III

Conformal Mapping: Some standard transforms – translation, rotation, magnification, inversion and reflection. Bilinear transformation – invariant points. Special conformal transformations: $w = e^z$, z^2 , sinz and cosz.

UNIT IV

Complex integration: Line integral - Evaluation along a path – Cauchy's theorem – Cauchy's integral formula – Generalized integral formula. Singular point – Isolated singular point – Simple pole, Pole of order m – Essential singularity.

UNIT V

Residues: Evaluation of residues by formula. Cauchy's residue theorem – Evaluation of the real definite integrals of the type (i) Integration around the unit circle $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$ (ii) integration around a small semi circle $\int_{-\infty}^{\infty} f(x) dx$

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S Grewal, Khanna Publishers-42 edition.
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Willey Publications, 9th edition- 2013.

Reference Books:

- 1. Higher Engineering Mathematics, B.V.Ramana, Mc.Graw Hill Education (India) Private Limited.
- 2. Advanced Engineering Mathematics by N. Bali, M Goyal, Firewall Media 7th edition.
- 3. Engineering Mathematics, Volume III, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher.

Course	Title	MANAGEI FINANCIA	RIAL F L ANA	ECON ALYSI	OMIC S	S AND	B. Tech. EC	E III Sem	l		
Course	Code	Category	Ho	ours/We	ek	Credits					
18253	601	Humanities and social	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
		sciences	3			3	30	70	100		
Mid Exa	m Dur	m Duration: 2Hrs End Exam Duration: 3Hrs									
Course (Objecti	ives:									
•	 To equip the budding engineering student with an understanding of concepts and tools of economic analysis. Provide knowledge of managerial economics through differential economics concepts, accounting concepts are necessary to analyze and solve complex problems relating financial related matters in bog industries. An understanding of professional and ethical responsibility and ability to communicate effectively. The broad education necessary to understand the impact of engineering solutions in a global and societal context. Recognition of the need for, and an ability to engage in life-long learning and to meet contemporary issues. 										
Course (Jutcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to			
CO 1	Acqui	re knowledge	in pri	inciples	and c	oncepts c	ot Managerial	Econom	ics and		
CO 2	Accou	intailcy	omia th	aorios i	a Dom	and Produ	uction Cost M	arkata and	Drico		
CO 2	Understand the Economic theories i.e., Demand, Production, Cost, Markets and Price.										
	Describe different types of Markets and competition, forms of organization and Methods of Pricing.										
CO 4	Exam	ine the profitab	ility of v	arious F	Projects.						
CO 5	Utilize	e tools and tech	niques to	o analyz	e and in	terpret the	key parameter	s of finan	cial		
	perfor	mance.	-			-					

UNIT – I

INTRODUCTION TO MANAGERIAL ECONOMICS

Definition, nature and scope of Managerial Economics –Demand analysis – Determinants, Law of Demand and its exceptions – Elasticity of Demand – Types and Measurement of Elasticity of Demand – Methods of Demand Forecasting (Statistical mehtods) – Supply Analysis.

UNIT – II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Functions: Law of variable proportion, Isoquants and Isocost, least cost combination of inputs, Returns to Scale and Cobb- Douglas production function. Internal and external economies of scale.

Cost Analysis: Cost concepts – Break-Even Analysis (BEA) – Break Even Point – significance and limitations of BEA.

UNIT – III

INTRODUCTION TO MARKETS AND PRICING

Markets structures: Perfect and Imperfect competition – Features of Perfect Competition, Monopoly, Monopolistic Competition and Oligopoly. Price- Output determination under perfect competition, monopoly and monopolistic competition – Price rigidity in Oligopoly.

Methods of pricing – cost plus pricing, marginal cost pricing, skimming pricing, penetration pricing, differential pricing and administrative pricing.

UNIT – IV

BUSINESS ORGINATIONS AND CAPITAL BUDGETING

Business Organizations: Types of business organizations- Sole Proprietorship, Partnership, Joint Stock Company, Public Ltd and Private Ltd companies, Public Private Partnership (PPP).

Capital Budgeting: Types of capital, methods and sources of raising Capital. Capital Budgeting Techniques: Payback Period Method, Accounting Rate of return (ARR) and Net Present Value Method (NPV) (simple problems).

$\mathbf{UNIT} - \mathbf{V}$

FINANCIAL ACCOUNTING AND ANALYSIS

Double Entry Book keeping, Journal, Ledger, Trail Balance – Final Accounts (Preparation of Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). Analysis and interpretation of financial statements through ratios (Liquidity, Profitability and Activity Ratios) (Simple problems).

TEXT BOOKS:

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand Publishers, 2009.
- 2. Prasad and K.V.Rao: Financial Accounting, jaibharth Publishers, Vijayawada.

REFERENCES:

- 1. P.L Mehtha: Managerial Economics, Sulthan Chand Publishers
- 2. K K Dewett Managerial Economics ,S. Chand Publishers
- 3. S.P Jain & K.L Narang: Financial Accounting, Kalyani publishers.
- 4. M.Sugunatha Reddy: Managerial Economics and Financial Analysis, Research India Publication, New Delhi, 2013.
- 5. Paul A Samuleson and William nordhaus : Economics, Oxford University Publications.
- 6. M L Jhingan : Micro Economics & Macro Economics, Vrinda Publacations (P) Ltd.

Course Ti	tle ELECT	RONIC CIR	C DEV CUITS	ICES A	AND	B. Tech. ECE III Sem					
Course Code	Category	Но	ours/We	eek	Credits	Maxin	num Mar	ks			
1804303	B PC	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTota					
		3			3	30	70	100			
Mid Exan	Duration: 2Hrs					End Exam	Duration	n: 3Hrs			
Course O	Dbjectives:										
•	To teach principles of semiconductor Physics										
•	• To introduce electronic devices, including diodes, bipolar junction transistors and										
	FET.										
•	To understand b	asic circ	uits of th	ne electr	onic devic	es.					
•	To learn the bias	ing of B	JT and I	FET.							
•	To teach small s	ignal ana	alvsis of	BJT and	d FET.						
Course O	utcomes: On succe	ssful cor	npletion	of this	course, the	students will	be able to				
CO1 D	escribe the operation	on of var	ious Dic	odes, tra	nsistors an	d their applicat	tions				
		otion of	trongists	, airaui	a undar di	fforont configu	rotions				
	iderstand the open	ation of	uansisu	or circuit	s under di	fielent configu	lations				
CO 3 A	Analyze the small signal analysis of BJT Amplifiers and of FET amplifiers										
CO 4 III	ustrate the Biasing	g of BJT	and FE	Г.							
CO 5 C	assify the family o	f MOS d	levices.								

<u>UNIT-I</u>

PN Junction Diode: Construction and operation of PN Junction Diode, V-I characteristics, Temperature Dependence, Static and dynamic resistance, Transition and Diffusion capacitance, Zener diode.

Diode Applications: Diode clippers and Clampers, Half wave, Full wave and Bridge Rectifiers with and without filters, Ripple factor and regulation characteristics. Applications of Zener Diode.

UNIT-II

Bipolar Junction Transistors: NPN and PNP Junction Transistors, Current components, CB, CE & CC configurations and their Input & Output Characteristics, Comparison of CE, CB and CC configurations, Saturation, Cutoff and Active regions, α , β and γ parameters and relation between them.

FET: JFET, JFET characteristics and configurations, Pinch off voltage, Drain saturation current,

Parameters of JFET, FET as Voltage Variable Resistor, Comparison between FET and BJT. MOSFET- Depletion and Enhancement types.

UNIT-III

BJT Biasing: Operating point, biasing stability, Various biasing circuits, thermal runaway, stabilization and compensation, Thermal stability, Transistor as an amplifier. **FET Biasing:** Fixed bias, Self bias and voltage divider bias.

UNIT-IV

Low frequency Analysis of Transistors: Hybrid model (h-parameters), small signal analysis of a single stage BJT amplifiers, comparison of CE, CB and CC amplifiers, Approximate model analysis, effects of coupling and bypass capacitors on low frequency response. Small signal models and analysis of JFET and MOSFET. CS, CD and CG Amplifiers and their comparison.

UNIT-V

Special Semiconductor Devices: LED, Photo diode, Photo Transistor, SCR, UJT, Tunnel diode.

Introduction to CMOS: NMOS, PMOS and CMOS-construction, operation, characteristics, advantages and comparison

Text Books:

- 1. Jacob Millman, Christos C. Halkias, "Integrated electronics" Tata McGraw Hill Publication
- **2.** K. R. Botkar, "Integrated Circuits" 5th edition, Khanna Publications
- **3.** A. Anand Kumar, "Pulse and Digital Circuits", PHI, 2005.

Reference Books:

- **1.** Y. Tsividis and M. Colin, "Operation and Modeling of the MOS Transistor," Oxford Univ.Press, 2011.
- 2. D. Neamen , D. Biswas "Semiconductor Physics and Devices," McGraw-Hill Education
- S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley &Sons, 2006.
- 4. C.T. Sah, "Fundamentals of solid state electronics," World Scientific Publishing Co. Inc,

1991.

Course	Title	DIGITAL	SYST	'EM D	DESIC	GN	B. Tech. EC	E III Sem	1			
Course	Code	Category	Hours/Week Credits			Maxin	ECE III Sem Iaximum Marks Ious al al nent End Exams Tota 70 100 xam Duration: 3Hrs ebra.					
18043	304	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3			3	30	70	100			
Mid Exa	um Duration: 2Hrs End Exam Duration: 3Hrs											
Course (Objecti	Dijectives:										
•	• To provide fundamentals of number systems and Boolean Algebra.											
•	• To l	learn the design	of com	oination	al and	sequential c	ircuits.					
•	• To t	teach various m	emories	and PL	Ds.							
Course (Outcon	nes: On success	ful com	pletion of	of this	course, the	students will be	e able to				
CO 1	Identi	fy various num	ber syste	ems and	binary	codes.						
CO 2	Under	rstand the postu	lates, th	eorems	and pr	operties of]	Boolean algebr	a.				
CO 3	Show	the correlation	between	the Boo	olean e	xpression a	nd their corresp	onding lo	ogic			
	diagra	m.				-	-		-			
CO 4	Analy	ze Combination	nal & sec	quential	logic c	circuits.						
CO 5	Solve	Switching funct	tions usi	ng Prog	ramma	ble Logic D	Devices					

UNIT-I

Number Systems & Codes: Overview of number systems –complement representation of negative numbers- binary arithmetic, binary codes, code conversion, error detecting & error correcting codes –Hamming codes.

UNIT-II

Boolean Algebra and Minimization of Switching Functions: Fundamental postulates of Boolean Algebra - Basic theorems and properties –Canonical and Standard forms- Minimal SOP and POS forms ,Algebraic simplification, digital logic gates –universal gates-Multilevel NAND/NOR realizations. The K- map method, tabulation method.

UNIT-III

Combinational Logic Design: Design using conventional logic gates, Half and Full Adders, Subtractors, Serial and Parallel Adders, Encoder, Decoder, Multiplexer, De-Multiplexer, Realization of switching functions using multiplexer, Parity bit generator, Code-converters, Hazards and hazard free realizations.

UNIT-IV

Sequential Logic Design: Synchronous and Asynchronous sequential circuits, Flip-flops-Triggering and excitation tables, Flip flop conversions, shift registers, Design of Synchronous and Asynchronous counters, Ring and Johnson counters. Finite state machines (Mealy Model, Moore Model) and their representation, Designing synchronous Sequential circuits like Serial Binary adder, Sequence detector.

UNIT-V

Semiconductor Memories and Programmable Logic Devices: ROM- Internal structure, Static RAM and Dynamic RAM. Basic PLD"s-ROM, PROM, PLA, and PAL, Realization of Switching functions using basic PLD"s. Concept of PLD"s like CPLDs and FPGAs.

Text Books:

1. ZVI Kohavi, Switching & Finite Automata theory –, TMH, 2nd Edition.

2. Morris Mano, "Digital Design", PHI, 3rd Edition, 2006.

3. A. Anand Kumar, "Switching Theory & Logic Design", 2008, PHI

Reference Books:

 R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
 W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.

3. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

4. William I. Fletcher, "An Engineering Approach to Digital Design", PHI.

5. Charles H. Roth, "Fundamentals of Logic Design", Thomson Publications, 5th Edition, 2004.

6. John M. Yarbrough, "Digital Logic Applications and Design", Thomson Publications,

Cour Title	se e	SIGNALS AND S YSTEMSB. Tech. ECE III Sem										
Cour Cod	se e	Category	Ho	ours/We	ek	Credits	Maxii	num Mai	:ks			
18043	05	EC	L T P		Р	С	Continuous Internal Assessment	End Exams	Total			
3 3 30 70 1									100			
Mid Ex	am Duration: 2Hrs End Exam Duration: 3Hrs											
Course	Obje	ctives:	ctives:									
•	To int	troduce termino	ology of	signals a	and syst	ems.						
•	To pr	esent Fourier to	ols throu	ugh the	analogy	between w	vectors and sign	nals.				
•	To tea	ach concept of s	sampling	g and rec	construc	tion of sig	nals.					
•	To pr	esent linear sys	tems in t	ime and	l freque	ncy domain	ns.					
•	To te	ach Laplace an	d z-tran	sform a	s mathe	ematical to	ol to analyze	continuou	S			
	and di	iscrete- time sig	gnals and	l system	IS.							
Course	Outco	omes: On succe	essful co	mpletion	n of this	course, th	e students will	be able to)			
CO 1	Iden	tify the various	signals	and ope	rations	on signals.						
CO 2	Describe the spectral characteristics of signals.											
CO 3	Illus	Illustrate signal sampling and its reconstruction.										
CO 4	App	ly convolution	and corr	elation i	n signal	l processin	g.					
CO 5	Ana	lyze continuous	and dis	crete tin	ne syste	ms.						
				TINIT	тт							

UNIT-I

Introduction: Definition and Classification of Signals, Elementary signals, Basic operations on signals.

Fourier series representation of periodic signals: Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, closed or complete set of orthogonal functions, Orthogonality in complex functions. Representation of function by a set of mutually orthogonal functions, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Spectrum and its significance, Amplitude and Phase spectra, bandwidth of a signal.

UNIT-II

Fourier transforms: Fourier transform, Fourier transform of standard signals, properties of Fourier transforms, Fourier transforms involving impulse function, Fourier transform of periodic signals.

UNIT-III

Discrete Time Signals: Sampling of continuous time signals, Sampling theorem, Reconstruction of signal from its samples, effect of under sampling – Aliasing. Elementary sequences- Unit impulse, step, ramp, and exponential sequences, Periodicity of Discrete-time signals, Operations on Discrete-time signals.

Signal transmission through LTI systems: Systems, Classification of Systems, Linear time invariant (LTI) system, Transmission of signals through LTI systems, Transfer function of a LTI system, Causality & Stability. Distortion less transmission through LTI system, Bandwidth of systems, relation between bandwidth and rise time.

UNIT-IV

Discrete Time Systems: Definition, classification, Linear Shift Invariant(LSI) system, Stability, Causality, Linear constant coefficient difference equation, Impulse response, Discrete time Fourier transform, Properties, Transfer function, System analysis using DTFT.

Convolution and correlation: Graphical method of convolution, auto correlation and Cross correlation of functions, properties of correlation function, Energy density spectrum, Power density spectrum, Relation between convolution and correlation, Applications of convolution and correlation.

UNIT-V

Laplace Transform: Definition, ROC, Properties, Inverse Laplace transform, The S-plane and BIBO stability, Transfer functions, System response to standard signals.

Z–Transforms: Definition, ROC and its properties, analysis of LTI system using Z-transform, The Inverse Z-transform using, Z-transform properties, Unilateral Z- Transform, solution of linear constant coefficient difference equations using Z-transforms.

Text Books:

- 1. Simon Haykin, "Communication Systems", 2nd Edition, Wiley-Eastern, 2003.
- 2. Oppenheim AV and Willisky, "Signals and Systems", 2nd Edition, Pearson Ed, 1997.
- **3.** B.P. Lathi, "Principles of Linear systems and signals," Oxford Univ. Press, Second Edition International version, 2009.

Reference Books:

- 1. Simon Haykin, Van Veen, and Wiley, "Signals & Systems", 2nd Edition, 2003.
- **2.** Luis F. Chaparro, "Signals and Systems using MATLAB," Academic Press, 2011.
- **3.** P. Ramesh Babu, R. Ananda Natarajan, "Signals and Systems", 2nd edition, SciTech Publications, 2006.
- **4.** John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, 4 th Edition, PHI, 2007.

Course 7	Гitle	NE	TWOF	RK TH	EORY	7	B. Tech. EC	E III Sem	l		
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks		
1804306		EC	L	End Exams	Total						
			3			3	30	70	100		
Mid Exa	m Dur	Duration: 2Hrs End Exam Duration: 3Hrs									
Course (Objecti	bjectives:									
•	To lear	n network theo	rems,								
• [Fo teacl	h application of	resonar	nce, tran	sients a	oplied for a	ac and dc circu	its			
•	Fo stud	y necessary cor	ditions	for netw	ork fun	ctions, var	ious parameter	s and its			
1	elation	ships.					-				
Course (Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to			
CO 1	Under	stand the basic	concep	ts of ma	gnetic c	ircuits,reso	onance and net	work fund	ctions.		
CO 2	Solve	DC and AC cir	cuits by	using va	arious th	eorems.					
CO 3	Analy	ze RL,RC and	RLC for	DC and	AC tra	nsient resp	onse.				
CO 4	Analy	ze two port net	works fo	or Z,Y,A	BCD,H	parameter	s and its relation	onship bet	tween		
	them	-				-		1			

UNIT - I

Network Theorems: Superposition theorem, Thevenin & Norton theorems, Maximum power transfer theorem, Reciprocity, Millman's and Compensation Theorems applied to DC and sinusoidal excitations.

UNIT – II

DC Transient Analysis: Determination of initial conditions – transient response of R-L, R-C & R-L-C circuits for dc–solution method using differential equation and Laplace transforms. **AC Transient Analysis:** Transient response of R-L, R-C and R-L-C series circuits for sinusoidal excitations, solution method using differential equation and Laplace transforms

UNIT – III

Resonance: Series, parallel circuits, concept of half power frequencies, bandwidth and Q factor. simple problems.

Magnetic Circuits: Concept of self and mutual inductances, dot conventions, coefficient of coupling, series and parallel magnetic circuits, composite magnetic circuits.

$\mathbf{UNIT} - \mathbf{IV}$

Single port and multiport networks, immittance functions of two port parameters, necessary conditions for driving point and transfer functions, complex frequencies, poles and zeros, time domain response from pole zero plots, restrictions from pole zero locations.

$\mathbf{UNIT} - \mathbf{V}$

Two port Networks: Two port networks, impedance parameters, admittance parameters, transmission parameters, hybrid and inverse hybrid parameters, relationship between parameters, conditions for symmetry and reciprocity, interconnected two port networks, terminated two port parameters and image parameters.

Text Books

- 1. Network Analysis Van Valkenburg 3rd edition, PHI.
- 2. Circuit Theory -A.Chakrabarti, Dhanapat Rai & Co publications.
- 3. Electrical Circuits N.Sreenivasulu, Reem publications.
- 4. Engineering circuit analysis -Hayt and Kimmerly-7th edition

Reference Books

- 1. Circuits & Networks A. Sudhakar, Shayammohan. S. Pillai, 4th Edition -. TMH
- 2. Networks and Systems D. Roy Chowdari New Age International
- 3. Network Analysis with applications Stanely Pearson education 4^{th} edition
- 4. Network Analysis by G.K.Mittal, Khanna Publishers.
- 5. Network Analysis by G.K.Mittal, Khanna Publisher

Course Title	РҮТН	ION I	PROG	RAMM	IING	B. Tech. ECE III	Sem				
Course Code	Category	H	lours/W	/eek	Credits	Maxim	Maximum Marks				
1805307	ES	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			-	3	1.5	50	50	100			
						End Exam	Duration: (3Hrs			
Course Ob	jectives:										
• [Γo write, test,	and de	ebug sin	nple Pyth	on program	lS.					
• [Го implement	Pytho	n progra	ams with	conditional	s and loops.					
• 1	Use functions	for str	ucturing	g Python	programs.	-					
• 1	Represent con	ipound	l data us	sing Pyth	on lists, tup	les, dictionaries.					
• 1	Read and write	e data	from/to	files in F	vthon.	,					
Course Out	tcomes: On si	uccessi	ful com	pletion o	f this course	e, the students will b	be able to				
CO1 Den	nonstrate the	functi	ons in F	ython pr	ogramming						

CO 1	Demonstrate the functions in Python programming.
CO 2	Illustrate Python programs with conditionals and loops.
CO 3	Test functions for structuring Python programs.
CO 4	Design functions for structuring Python programs.
CO 5	Evaluate compound data using Python lists, tuples, dictionaries.

LIST OF PROGRAMS

- **1.** Compute the GCD of two numbers.
- 2. Find the square root of a number (Newton's method)
- **3.** Exponentiation (power of a number)
- 4. Find the maximum of a list of numbers
- 5. Linear search and Binary search
- **6.** Selection sort, Insertion sort
- 7. Merge sort
- 8. First n prime numbers
- 9. Multiply matrices
- **10.** Programs that take command line arguments (word count)
- **11.** Find the most frequent words in a text read from a file
- **12.** Simulate elliptical orbits in Pygame
- **13.** Simulate bouncing ball using Pygame

PLATFORM NEEDED

Python 3 interpreter for Windows/Linux

Course Title	ELEC	ΓROI CIR	NIC D CUIT	DEVIC S LAB	ES AND	B. Tech. ECE	E III Sem	
Course Code	Category	H	ours/W	'eek	Credits	Maxim	um Marl	KS
1804308	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
				3	1.5	50	50	100
						End Exan	n Duratio	n: 3Hrs
Course Objecti	ives:							
• To v • To v	erify the char erify the perf	acteris orman	tics of o	different rcuits wi	diodes and track the diodes and	ransistors. l transistors.		

Co	urse Outcomes: On successful completion of this course, the students will be able to
CO 1	Verify the V-I Characteristics of various diodes.
CO 2	Examine the load characteristics of rectifiers.
CO 3	Verify the Input and Output characteristics of various transistors.
CO 4	Experiment clipper and clamper circuits.

LIST OF EXPERIMENTS:

- 1. V-I Characteristics of Pn Junction Diode
- 2. V-I Characteristics o Zener Diode
- 3. Zener Regulator Characteristics
- 4. V-I Characteristics of LED
- 5. Half-Wave Rectifier With and Without Filter
- 6. Full-Wave Rectifier With and Without Filter
- 7. Bridge Rectifier With and Without Filter
- 8. Clipper Circuits
- 9. Clamper Circuits
- 10. Input & Output Characteristics of Transistor In CB Configuratio
- 11. Input & Output Characteristics of Transistor In CE Configuration
- 12. FET Characteristics
- 13. SCR
- 14. UJT Characteristics

Course	Title	ENVIR	ONME	INTAL	SCIEN	СЕ	B. Tech.	ECE III S	Sem			
Course	Code	Category	Hours/Week Credits				Maxin	Maximum Marks				
18994	M1	MC1	L	L T P		С	Continuous Internal Assessment	End Exams	Total			
			2			0	30					
Mid Exa	am Dur	ation: 2Hrs										
Course	Objecti	ves:										
•]	Го make	make the students to get awareness on importance of environment in our life.										
•]	Го unde	erstand the im	portance	e of pro	otecting	natural re	esources, ecos	ystems fo	or future			
g	generatio	ons and polluti	on caus	es due t	to the d	ay to day	activities of h	uman life	to save			
e	earth fro	m the invention	ns by the	e engine	ers.							
Course	Outcon	nes: On success	sful com	pletion	of this c	ourse, the	students will b	e able to				
CO 1	Recall	environmental	concep	ts for the	e sustai	nable devel	lopmental activ	vities towa	urds the			
	society	1.										
CO 2	Summ	arize the inter	connecti	on of hu	ıman de	pendence (on this ecosyste	em.				
CO 3	Solve	environmental	problem	is by gai	ning a ł	igher level	l of knowledge	and perso	onal			
	involv	ement.										
CO 4	Outlin natural	e the impact of resources.	f develo	pmental	activiti	es on envir	conment and pr	oper utiliz	zation of			

UNIT-I

Introduction to Environmental Studies- Natural Resources

Multidisciplinary nature of environmental studies. Scope and Importance.

Natural resources and associated problems - Renewable and non renewable Resources

(a) Forest resources –Deforestation: Causes and impacts due to mining, dams – benefits and problems

(b) Water resources – Use and over utilization of surface and ground water – Floods, drought, and conflicts over water

(c) Energy resources –Renewable and Non Renewable energy resources, use of alternate energy resource

(d) Land resources -Soil erosion and desertification, Land degradation.

Role of an individual in conservation of natural resources.

UNIT-II

Ecosystem

Ecosystem- Definition – Structure and function of an ecosystem – Energy flow in the ecosystem –Food chains, food webs, Ecological succession.

Introduction, types, characteristic features of the following ecosystem:

(a)Forest ecosystem, (b)Grassland ecosystem,(c)Desert ecosystem,(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT-III

Biodiversity and its conservation

Levels of Biodiversity: genetic, species and ecosystem diversity – Bio-geographical classification of India – Hotspots .Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – India as a mega-diversity nation – Endangered and endemic species. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT-IV

Environmental Pollution

Definition, Cause, effects and control measures of (a) Air Pollution,(b)Water pollution,(c)Soil pollution (d)Noise pollution. Nuclear hazards –Risks to human health .Solid waste management: Control measures of urban and industrial wastes. Pollution case studies. Global Warming, Ozone layer depletion, acid rains and impacts on human communities and environment .Disaster management: floods, earthquakes, cyclones

UNIT-V

Environmental policies

Environment Protection Act – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act .International agreements: Montreal and Kyoto protocols and conservation on Biological Diversity (CBD).

Human communities and Environment

Human population and growth: impacts on environment, human health and welfares. Environmental movements: chipko, silent valley. Environmental Ethics: Role of individual in environmental conservation. Public awareness

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, birds – Study of simple ecosystems-pond, river, hill slopes, etc..

Text Books:

1. Text book of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission, Universities Press.

2. Environmental studies by Benny Joseph, Mc, Graw Hill Publications.

3. Principles and a basic course of Environmental science for under graduate course by Kousic,KouShic.

4. Text book of Environmental science and Technology by M. Anji Reddy,BS Publication.

Reference Books:

1. Environmental sciences and engineering – J. Glynn Henry and Gary W. Heinke – Printice hall of India Private limited.

2. Environmental Studies by Anindita Basak – Pearson education.

3. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela - Printice hall of India Private limited.

IV Semester

S. No.	Subject Code	Subject	Category	L	Т	Р	IM	EM	Credits
1	1823401	Biology for Engineers	BS	2	0	0	30	70	2
2	1804402	Probability Theory and Stochastic Processes	EC	3	0	0	30	70	3
3	1804403	Analog and Digital Circuits	EC	3	0	0	30	70	3
4	1802404	Control Systems	EC	3	0	0	30	70	3
5	1804405	Linear IC Applications	EC	3	0	0	30	70	3
6	1804406	Electromagnetic Theory and Transmission lines	EC	3	0	0	30	70	3
7	1804407	LabView Programming	ES	0	0	3	50	50	1.5
8	1804408	Analog and Digital Circuits Lab	EC	0	0	3	50	50	1.5
9	1824409	Advanced English Communication Skills	HS	0	0	4	50	50	2
		Total:							22

Course	Title	Bio	logy fo	r Engi	neers		B. Tech. ECE IV Sem				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks		
1823401		BS	L	Т	Р	С	C Continuous Internal Assessment Exam				
			3	1		4	30	70	100		
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs		
Course	Objecti	ives:									
> I	ntroduc	tion to Basics of	of Biolo	gy whic	h incluc	les cell, th	e unit of life,	Different	types of		
с	ells and	l classification of	of living	organis	ms.						
) 🖌	Jndersta	anding what are	bio mo	olecules	present	in a cell, t	their structure	function a	and their		
r	ole in a	living organisn	n. Appli	cation of	f certain	bio molec	ules in Industr	y.			
≻ E	Brief int	roduction to hu	man phy	siology	, which	is essentia	l for bioengine	ering field	1.		
א נ ע	Jndersta	anding the here	ditary u	nits, tha	t is gen	es and ger	netic materials	(DNA an	id RNA)		
p	oresent i	in living organis	ms and	how the	v replic	ate and pa	ss and preserve	e vital info	ormation		
i	n living	organisms.			5 1	1	1				
> F	How bic	ology can be ap	olied in	our dail	v life us	ing differe	ent technology.	for produ	uction of		
n	nedicin	es to transgenic	nlants a	nd anim	als to de	esigning ne	ew biotechnolo	ogical prod	ducts		
Course	Outcon	nes: On success	ful com	nletion ($\frac{1}{2}$ of this c	ourse the	students will b	e able to			
CO 1	Under	rstand the differ	ence be	tween lo	wer org	anisms (ni	okarvotes) fro	m higher			
001	organi	sms (eukarvote				unionio (pi	okar yotos) 110	in inglier			
CO^{2}	Intern	rat the relations	s). hin hatu	yaan tha	structur	a and func	tion of nucleic	acide			
CO_{2}	Under	ret the relations				e and func	mon functions	acius.			
	Under	rstand the mech	anism a	na proce	ess of in	iportant nu	iman functions				
CO 4	Descri	be the proteins	synthesi	zation,	recombi	nant DNA	technology an	d its appli	cation		
	in diff	erent fields.									
CO 5	Apply	biology for pro	duction	of usefu	ıl produ	cts for mar	nkind				

Unit I

Introduction to Basic Biology

Cell: What is a Cell, Cell theory, Cell shapes, structure of a Cell, Cell cycle chromosomes The Plant Cell and animal Cell, protoplasm, prokaryotic and eukaryotic Cell, Plant Tissue and Animal Tissue. Brief introduction to five kingdom of classification.

Learning Outcomes:

After completing this unit, the student will be able to

- Summarize the basis of life. (L2)
- Understand the difference between lower organisms (prokaryotes) from higher organisms (eukaryotes). (L3)
- Understand how organisms are classified based. (L2)

Unit II

Introduction to Bio-molecules

Carbohydrates, proteins, Amino acid, nucleic acid (DNA and RNA) and their types.

Enzymes and their application in Industry. Large scale production of enzymes by Fermentation.

Learning Outcomes:

After completing this unit, the student will be able to

- Understand what are bio molecules? Their role in living cells their structure function and how they are produced. (L2)
- Interpret the relationship between the structure and function of nucleic acids. (L2)
- Summarize the applications of enzymes in industry. (L2)
- Understand what is fermentation and its applications of fermentation in industry. (L2)

Unit III

Human Physiology

Nutrition (Classes of nutrients or food substances), Digestive systems

Respiratory system (two kinds of respiration - aerobic and anaerobic) Respiratory organs,

respiratory cycle. Excretory system

Learning Outcomes:

After completing this unit, the student will be able to

• Understand the mechanism and process of important human functions

Unit IV

Genes, Replication of DNA, And Introduction to recombinant DNA Technology:

Prokaryotic gene and Eukaryotic gene structure, gene replication, Transcription and Translation in Prokaryote and Eukaryote and synthesis of protein in Eukaryotes. Recombinant DNA technology and cloning introduction.

Learning Outcomes:

After completing this unit, the student will be able to

- Understand and explain about gene structure and replication in prokaryotes and Eukaryotes
- How genetic material is replicated and also understands how proteins are synthesized.
- Understand about recombinant DNA technology and its application in different fields.
- Explain what is cloning.

Unit V

Application of Biology

Brief introduction to Production of vaccines, Enzymes, antibodies, Cloning in microbes, plants and animals, Basics of biosensors, biochips, Bio fuels, and Biosensors. What is Tissue engineering? And its application, transgenic plants and animals, Bio engineering (production of artificial limbs, joints and other parts of body).

Learning Outcomes:

After completing this unit, the student will be able to Understand.

• How biology is applied for production of useful products for mankind.

Text books:

- 1. Cell and Molecular Biology-P.K.Gupta
- 2. Cell Biology-Verma and Agarwal
- 3. Cell Biology-Rastogi
- 4. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- T Johnson, Biology for Engineers, CRC press, 2011 Molecular Biology and Biotechnology 2nd ed. J.M. Walker and E.B. Gingold. Panima Publications. PP 434.

Reference Books:

- 1. Alberts Et.Al. The molecular biology of the cell, 6/e, Garland Science, 2014
- De Robertis EDP & EMF De Robertis. 2001. Cell and Molecular biology. Lippincott Williams & Wilkins.Bombay.
- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012 Principles of Biochemistry. 2nd ed. 1993. A.L. Lehninger, D.L.Nelson.M.Cox. Paniama Publications. PP. 1090.
- 5. Harper's biochemistry. 1988. R.K. Murray. D.K. Granner, P.A. Mayes. Printice Hall International.
- 6. Introductory Microbiology. 1995, by Trevor Gross.
- 7. Molecular Biology by G. Padmanabhan, K. Sivaram Sastry, C. Subramanyam, 1995, Mac Millan.
- 8. Biochemistry of Nucleic Acids.1992.11th ed.R.L.P.Adams.J.T.Knowler.D.P Leader.Chapman and Hall.
- 9. Genetic Engineering –Sandhya Mitra.
- 10. Molecular Biology and Biotechnology by Meyers, RA, A comprehensive Desk reference (VCH Publishers).

Course	Title	Probabili	ty The Pro	ory and cesses	nastic	B. Tech. ECE IV Sem			
Course	Code	Category	Ho	ours/We	ek	Credits	Maximum Marks		
1804402		EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	1		4	30	70	100
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs
Course	Objecti	ves:							
	➤ The Objective of this course is to provide the students with knowledge about the								
	random variable, random process.								
	\triangleright	To model the	random	process	ses in th	ne commun	nication systen	n such as	receiver
		performance,	nterfere	nce, the	rmal no	ise, and m	ultipath phenor	menon.	
	\triangleright	The Objective	of this	course is	s to prov	vide the stu	idents with kn	owledge a	bout the
		random variab	le, rand	om proc	ess.				
	\triangleright	To model the	random	process	ses in th	ne commun	nication systen	n such as	receiver
		performance,	nterfere	nce, the	rmal no	ise, and m	ultipath phenor	menon.	
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Interp	ret probability	oy mode	ling san	nple spa	ces.			
CO 2	Apply	v various randor	n proces	sses like	Gaussia	an, Expone	ential, Uniform	and Pois	son
	proces	ses experimenta	ally.						
CO 3	Comp	oute PSD of Rar	ndom pr	ocess.					
CO 4	solve	complex engine	eering p	roblems	involvi	ng random	processes		

UNIT-I

Probability: Probability definition, Event, Sample space, Axioms, Joint and conditional probability, Independent events, Total probability theorem, Baye's theorem, Bernoulli trials. **Random Variable**: Concept, Distribution function, Density function, Conditional distribution and density functions.

UNIT –II

Operations on Single random variables: Expectation, Conditional expected value, Moments, Chebyshev, Markov's and Chernoff's inequalities, Characteristics and moment generating functions, Transformation of continuous and discrete random variable.

UNIT-III

Multiple Random Variables: Vector random variables, Joint distribution & Density functions, Conditional density & Distribution functions, Statistical independence, pdf and cdf for sum of random variables, Central limit theorem, Operations on multiple random variables, Expected value of function of random variables, Joint characteristic function, Joint by Gaussian random variables, Transformations of multiple random variables.

UNIT – IV

Random Processes : Concept, Stationarity, Independence, Time averages, Ergodicity, Correlation functions and its properties, Gaussian, Poisson, and Markov processes, Power spectral density and its properties, Relation between power spectral density and auto-correlation, Cross power spectral density and its properties, Power spectrum for discrete time processes and sequences, Definition of white and colored noise.

UNIT-V

Linear Systems with Random Inputs: Random signal response of linear system, System evaluation using random noise, Spectral characteristics of system response, Noise bandwidth, Band pass, Band limited, and Narrow band processes, Properties of band limited processes.

Text Books:

- 1. P.Z. Peebles Jr., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill, 4th Edition, 2001.
- 2. A. Papoulis and S. Unnikrishna Pillai, "Probability Random Variables and Stochastic Processes", 4th Edition, PHI, 2007
- 3. B.P. Lathi, "Modern Digital and Analog Communication Systems," Third Edition, OXFORD University press, 1998.
- 4. Hwei P. Hsu, Ph.D., "Theory and Problems of Probability, Random Variables, and Random Processes", Schaum's Outline Series, McGraw Hill, New York, 1968.

Reference Books:

- 1. S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 2. G.R. Babu and K. Pushpa, "Probability Theory and Stochastic Processes", Premier Publishing House.
- 3. D. G. Childer, "Probability and Random Processes", McGraw Hill, 1997.

Course Title	Analo	g and l	Digital	Circui	ts	B. Tech. ECE IV Sem		
Course Code	Category	Hours/Week			Credits	Maximum Marks		
	EC	L T P		Р	С	Continuous	End	Total

18044	403						Internal	Exams	
							Assessment		
			3	1		4	30	70	100
Mid Exam Duration: 2Hrs				End Exam Duration: 3Hrs					
Course	Course Objectives:								
	> To learn about multistage amplifiers, Feedback amplifiers and power								
	amplifiers.								
	> To provide knowledge about working and design of oscillators.								
		To teach n	nultivibr	ators an	d time b	ase genera	ators.		
		To know t	he funda	amentals	of logic	c families.			
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will b	e able to	
CO 1	Analyz	e the multistage	amplifie	rs, feedba	ack ampl	ifiers and p	ower amplifiers		
CO 2	Design	sinusoidal and n	on-sinus	oidal osc	illators				
CO 3	Design different multi-vibrator circuits								
CO 4	Illustrate time base generators								
CO 5	Under	Understand the operation of various digital circuits							

<u>UNIT-I:</u>

High frequency analysis of transistors: The Hybrid-pi (π)- Common Emitter Transistor Model, CE short Circuit Current gain, Current gain with Resistive Load, Single Stage CE Transistor Amplifier response, Emitter follower at higher frequencies. High frequency analysis of FET-CS and CD amplifiers.

UNIT-II:

Frequency Response of Amplifier: RC Low Pass Filter - RC Integrator, RC High Pass Filter - RC Differentiator, Frequency Response of BJT Amplifier, Analysis at Low and High Frequencies, Bandwidth, Gain-Bandwidth Product, Step response of an amplifier- rise time ,tilt.

Multi Stage Amplifiers: Types of coupling- RC, transformer and direct, choice of amplifier configurations, overall gain and bandwidth of n-stage amplifier, analysis of two-stage RC coupled amplifier, Darlington and Bootstrap circuits.

UNIT-III:

Feedback Amplifiers: Feedback concept, classification, effects of negative feedback on gain, stability, noise, distortion, bandwidth, input and output resistances. Different types of feedback circuits.

Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators.

UNIT-IV

Power amplifiers: Classification of power amplifiers, Distortion in amplifiers, efficiency of class-A, class-B, class-C and class-D power amplifiers, complementary symmetry push pull power amplifier.

Tuned Amplifiers: Introduction, Q-Factor, Small Signal Tuned Amplifiers, Effect of Cascading Single Tuned Amplifiers on Bandwidth, Effect of Cascading Double Tuned Amplifiers on Bandwidth, Stagger Tuned Amplifiers, Stability of Tuned Amplifiers.

UNIT-V:

Digital Logic Circuits: AND, OR & NOT gates using Diodes and transistors, Analysis of DCTL, RTL, DTL, TTL, ECL, IIL, MOS, CMOS Logic families and Comparison between the logic families.

Text Books:

1. J Jacob Millman, Christos C. Halkias, "Integrated electronics" Tata McGraw Hill Publication

2. J.Millman, H.Taub and Mothiki S. Prakash Rao, "Pulse, Digital and Switching Waveforms", TMH ,2nd Edition, 2008.

3. K. R. Botkar, "Integrated Circuits" 5th edition, Khanna Publications

Reference Books:

1. P. Horowitz and W. Hill, The Art of Electronics, 2nd edition, Cambridge University Press, 1989.

2. Paul R. Gray and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley, 3rd Edition

3. A.S. Sedra and K.C.Smith, Microelectronic Circuits, Saunder's College Publishing, Edition IV

Course Title		Contro	l Syster	B. Tech. ECE IV Sem				
Course Code	Category	Hours/Week			Credits	Maximum Marks		
1802404	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	1		4	30	70	100

Mid Exam Duration: 2Hrs	End Exam Duration: 3Hrs					
Course Objectives:						
> To learn mathematical modeling of physical system, electrical systems.						
> To teach time response of first order and second order Systems.						
> To learn stability analysis using time domain an	nd frequency domain.					

To learn design compensator in frequency domain to improve the performance.

i i i i i i i i i i i i i i i i i i i						
Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Classify the types of control systems					
CO 2	Choose the method to solve the problems for time and frequency domain input systems					
CO 3	Compare the system stability for different inputs					
CO 4	Design lag, lead, lag-lead compensators in frequency domain					

UNIT - I

Control System Concepts: Introduction to control systems, classification, transfer function, effect of feedback, mathematical modeling of physical systems, block diagram, reduction techniques, signal flow graphs and mason's gain formula, transfer function of simple electrical systems.

UNIT - II

Time Domain Analysis: Standard test signals, time response of first and second order systems- time response specifications , steady state error and error constants, response of P, PI, and PID controllers.

UNIT – III

Concept of Stability and Root Locus: The concept of stability, necessary conditions for stability – routh hurwitz's criterion – limitations of routh's stability – root locus concept – construction of root loci, effect of poles & zeros on stability.

$\mathbf{UNIT} - \mathbf{IV}$

Frequency Domain Analysis: Introduction, correlation between time and frequency response, frequency domain specifications, bode plots, nyquist stability criterion - gain and phase margin.

UNIT – V

Compensation Techniques: System design and compensation – realization of basic lead, lag and lead – lag cascade compensations in frequency domain.

Text Books

1. "Control Systems Engineering" by I. J. Nagrath and M. Gopal, New Age International (P) Limited, Publishers, 5th edition, 2007.

2. "Automatic Control Systems" by B. C. Kuo and Farid Goinaraghi – John Wiley and Son's, 8th edition, 2003.

3. "Control Systems" by A. Anand Kumar, Prentice Hall of India Pvt. Ltd.

4. Control System Engineering by A.Nagoor Kani, RBA PUB.

Reference Books

1. "Modern Control Engineering" by Katsuhiko Ogata, Prentice Hall of India Pvt. Ltd., 5th edition, 2010.

Course Title	Li	near IC	Applica	ations		B. Tech. ECE IV Sem			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
1804405	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	1		4	30	70	100	
Mid Exam Dur	ation: 2Hrs		End Exam Duration: 3Hrs						

2. "Control Systems Engineering" by NISE, 5th edition, John Wiley.

Course Objectives:

- To introduce Operational Amplifiers (Op-Amps)
- To give the concepts of design and analysis related to Op-Amp Applications as
- Timers
- Phase Locked Loops (PLLs)
- Waveform Generators
- Analog Filters
- Data Converters

Course Outcomes: On successful completion of this course, the students will be able to					
Understand characteristics of Op-Amps and 555 timers					
Compare DC and AC characteristics of Op-Amps in the design and simulation of					
analog systems and subsystems					
Apply Op-Amps and 555 Timers in various applications.					
Analyze Data Converters and Active Analog Filter circuits in the development of					
Instrumentation and Control Systems					

UNIT-I

Differential amplifiers: Definition, DC and AC analysis of Dual input-Balanced output Differential Amplifier, Properties of other three differential amplifier configurations, Transfer characteristics of Differential Amplifier, Level Translator.

Operational Amplifiers: Ideal op-amp Characteristics, Internal circuit of Op-Amp, Block diagram of Commercial IC Op-Amp, FET input op-amp, DC and AC characteristics of Op-Amp, Frequency Compensation.

UNIT-II

Basic Op-Amp Applications: Ideal Inverting and Non-Inverting Amplifiers, Voltage Follower, Summer, Subtractor, Differentiator - Ideal Differentiator, Practical Differentiator, Integrator - Ideal Integrator, Practical Integrator, Instrumentation amplifier, DC and AC Amplifiers, V to I and I to V converters, Precision rectifiers, Sample and Hold Circuit.

UNIT-III

Comparators and waveform generators: Principle of Comparator, Schmitt Trigger, Astable Multivibrator, Monostable Multivibrators, Triangular Wave Generator.

Active Filters: Introduction to Analog Active Filters, Design and analysis of First Order Low Pass Filter and First Order High Pass Filter, Design and analysis of Second order Low pass Filter and Second Order High Pass Filter, Qualitative treatment of Band pass Filters and Band Reject Filters.

UNIT-IV

Sinusoidal Oscillators: Criterion for Oscillations, RC Phase Shift Oscillator and Wien Bridge Oscillator using OP-Amp.

555 Timers: Functional block diagram and Pin diagram of 555 Timer, 555 Timer in Monostable Mode, 555 Timer in Astable Mode

Phase Locked Loops (PLLs): Basic principle of PLL, Components used in PLL, IC PLL (565), PLL applications.

UNIT-V

Digital to Analog Converters (DACs): Introduction, Basic DAC Technique, Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, IC 1408 DAC, DAC Specifications **Analog to Digital Converters (ADCs):** Functional Diagram of ADC, 'Direct type' vs 'Integrating type' ADCs, Parallel Comparator (Flash) ADC, Successive Approximation ADC, Dual Slope ADC, ADC Specifications.

Text Books:

- 1. D. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", 2nd Edition, New Age, 2003
- 2. Ramakant A. Gayakward, "Op-amps and Linear Integrated Circuits", 4th Edition, Pearson Education, 2003
- 3. David A. Bell, 'Op-amp & Linear ICs', Oxford, 2013

Reference Books:

- 1. James M. Fiore, "Opamps & Linear Integrated Circuits Concepts & Applications", Cengage, 2010.
- 2. Thomas L. Floyd and David M. Buchla, "Fundamentals of Analog Circuits", Pearson, 2013.
- 3. Jacob Millman and Christos C. Halkias, "Integrated Electronics Analog and Digital Circuits and Systems", Tata McGraw-Hill, 2003
- 4. Robert F. Coughlin, Fredrick F. Driscoll, "Op-amp and Linear ICs", PHI Learning, 6th Edition, 2012.

Course Title	Electromag	netic Th l	eory an ines	d Trans	smission	B. Tech. ECE IV Sem			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
1804406	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	1		4	30	70	100	

Mid Exam Duration: 2Hrs	End Exam Duration: 3Hrs						
Course Objectives:							
1. Understanding and increasing the ability to use vector	1. Understanding and increasing the ability to use vector algebra, and vector calculus.						
2. Proficiency in the use of vector identities, and vario	2. Proficiency in the use of vector identities, and various Coordinate systems &						
transformations							
3. Providing the basic education in static electromagne	tic fields and time varying						
electromagnetic waves.							
4. Developing analytical skills for understanding propagation of electromagnetic waves							
in different media.							
5. Understanding the concepts of transmission lines &	their applications.						
Course Outcomes: On successful completion of this c	ourse, the students will be able to						
CO 1 Understand the basics of Electro Statics and	Magneto Statics.						
CO 2 Apply Maxwells equations in the derivation	of fields.						
CO 3 Calculate Electric and magnetic fields due to	various sources.						
CO 4 Analyze the wave propagation in different m	Analyze the wave propagation in different media.						
CO5 Design the single and double stub matching t	using Smith chart.						

UNIT-I

Electrostatics: Review of Vector algebra, Co-ordinate systems & transformation, Vector calculus, Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations between E and V, Maxwell's two Equations for Electrostatic Fields, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT-II

Magneto statics: Biot-savart's law, Ampere's law and applications, Magnetic flux density, Maxwell's two equations for magneto static fields, magnetic scalar and vector potentials, Forces due to Magnetic fields, Ampere's force law, inductances and magnetic energy, illustrative problems.

UNIT-III

Maxwell's Equations (Time varying fields): Faraday's law and transformer emf, Inconsistency of ampere's law and displacement current density, Maxwell's equations in different final forms and word statements, conditions at boundary surface: Dielectric-Dielectric and Dielectric-conductor interfaces, illustrative problems.

UNIT-IV

EM wave characteristics: Wave equations for conducting and perfect dielectric media, Uniform plane waves-Definition, All relations between E&H, Sinusoidal variations, Wave propagation in loss less and conducting media, conductors& dielectrics- characterization, wave propagation in good conductors and good dielectrics, polarization.

Reflection and Refraction of plane waves: Normal and Oblique incidences for both perfect conductors and dielectrics, Brewster angle, Critical angle and total internal reflection, Surface impedance, pointing vector and pointing theorem-applications, power losses in a plane conductor, illustrative problems.

UNIT-V

Transmission lines: Types, parameters, Transmission line equations, Primary & Secondary constants, Expression for characteristic impedance, Propagation constant, Phase and group velocities, Loss less and low loss characterization, Distortion- condition for Distortion less

and minimum attenuation, input impedance relations, SC and OC lines, Reflection coefficient, VSWR, Smith chart & its applications, illustrative problems.

Text Books:

1. Matthew N.O. Sadiku, "Elements of Electromagnetics," Oxford Univ. Press, 4th ed., 2008.

2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics," TMH, 7th ed., 2006.

3. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems "PHI, 2^{nd}

Ed., 2000.

Reference Books:

1. John D. Krauss, "Electromagnetics", McGraw- Hill publications, 3rd ed., 1988.

 John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.
 Schaum's out – lines, "Electromagnetics,", Tata McGraw-Hill publications, Second Edition,

2006.

Course Title	LABVIEW PROGRAMMING LABORATORY				B. Tech. ECE IV Sem			
Course Code	Category	Hours/Week			Credits	Maximum Marks		
1804407	ES	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	1		4	30	70	100
Mid Exam Duration: 2Hrs				End Exam Duration: 3Hrs				

Course Objectives:

- 1. To write, test, and debug simple LabView programs.
- To implement LavView programs with conditional statements.
- To perform operations on arrays and strings.
- Use SubVi"s for structuring LabView programs.
- Read and write data from/to files in LabView.

Course Outcomes: On successful completion of this course, the students will be able to				
CO 1	Write simple Lab view Programs			
CO 2	Implement LavView programs with conditional statements.			
CO 3	Perform operations on arrays and strings.			
CO 4	Use SubVi ^w s for structuring LabView programs.			

LIST OF PROGRAMS

- 1. Basic arithmetic operations
- (Add, mul, div, compound arithmetic, expression node, express formula and formula node)2. Boolean operations

(truth table verification of logic gates, Half Adder and Full Adder, convert binary to decimal value, convert BCD to Gray and Vice-Versa)

3. String operations

(Length, concatenation, insert string, sub-string, replace string, reverse string, rotate string, etc)

- 4. Sum of "N" numbers using feedback loop (use "for " loop and "while" loop)
- 5. Factorial of a give number using shift register (use "for" loop and "while" loop)
- 6. Generate Fibonacci series for N iteration (use "for" loop)
- 7. Create a VI to increase the tank level from 0 to 100 & decrease the value from 100 to 0 using while loop in a single process.
- 8. Create a VI to implement and, or & not gates(or arithmetic operations) using case structure

- 9. Build a VI that generates a 1D array of random numbers and sort the array in descending and ascending order and find the following:
 - a) Maximum and min value of array elements
 - b) Size of the array
 - c) Sum and product of array elements
 - d) Rotate array by 1 position
 - e) Split the array after 2 elements
- 10. Build an array of cluster controls in which each cluster consists of a numeric control and 1D numeric array. This forms the database of students. The numeric control indicates the roll no and array indicates the test marks of 4 subjects. Build the logic to modify the mark in a particular subject of a particular student. Input the roll number, subject in which mark is to be changed and new mark. Display the database on a separate array indicator.
- 11. Create a VI to implement Full Adder circuit using SubVI.
- 12. Any application using Flat and stacked sequence

PLATFORM NEEDED

LABVIEW Software for Windows/Linux

Course Title	Analog and Digital Circuits Lab					B. Tech. ECE IV Sem			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
1804408	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	1		4	30	70	100	
Mid Exam Duration: 2Hrs				End Exam Duration: 3Hrs					

Course Objectives:

- To study the performance of various amplifiers and oscillators using hardware and software.
- To study the performance of multivibrators.

Course Outcomes: On successful completion of this course, the students will be able to				
CO 1	Analyze the circuits including MOSFET, BJT.			
CO 2	Design analog electronic circuits using discrete components.			
CO 3	Obtain frequency responses of amplification circuits.			
CO 4	Measure parameters of analog circuits to compare experimental results in the laboratory			
	with theoretical analysis.			
CO5	Verify the truth tables of various logic circuits.			

LIST OF EXPERIMENTS:

Hardware:

- 1. CE AMPLIFIER
- 2. CC AMPLIFIER
- 3. VOLTAGE SHUNT FEEDBACK AMPLIFIER
- 4. TWO STAGE -RC COUPLED AMPLIFIER
- 5. RC PHASE SHIFT OSCILLATOR
- 6. VRIFICATION OF LOGIC GATES, ADDERS AND SUBTRACTORS.
- 7. HARTLEY OSCILLATOR

Simulation (MULTISIM):

- 8. CLASS A POWER AMPLIFIER.
- 9. CURRENT SERIES FEEDBACK AMPLIFIER
- 10. RC PHASE SHIFT OSCILLATOR
- 11. HARTLEY OSCILLATOR
- 12. COLPITT"S OSCILLATOR

13. DESIGN OF COUNTERS USING FLIP FLOPS (DECADE, RING AND JHONSON) 14. EMITTER FOLLOWER